Spatially resolved simulations of membrane reactions and dynamics: multipolar reaction DPD.
نویسندگان
چکیده
Biophysical chemistry of mesoscale systems and quantitative modeling in systems biology now require a simulation methodology unifying chemical reaction kinetics with essential collective physics. This will enable the study of the collective dynamics of complex chemical and structural systems in a spatially resolved manner with a combinatorially complex variety of different system constituents. In order to allow a direct link-up with experimental data (e.g. high-throughput fluorescence images) the simulations must be constructed locally, i.e. mesoscale phenomena have to emerge from local composition and interactions that can be extracted from experimental data. Under suitable conditions, the simulation of such local interactions must lead to processes such as vesicle budding, transport of membrane-bounded compartments and protein sorting, all of which result from a sophisticated interplay between chemical and mechanical processes and require the link-up of different length scales. In this work, we show that introducing multipolar interactions between particles in dissipative particle dynamics (DPD) leads to extended membrane structures emerging in a self-organized manner and exhibiting the necessary mechanical stability for transport, correct scaling behavior, and membrane fluidity so as to provide a two-dimensional self-organizing dynamic reaction environment for kinetic studies in the context of cell biology.
منابع مشابه
Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale
The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...
متن کاملThe Palmitoylation Machinery Is a Spatially Organizing System for Peripheral Membrane Proteins
Reversible S-palmitoylation of cysteine residues critically controls transient membrane tethering of peripheral membrane proteins. Little is known about how the palmitoylation machinery governs their defined localization and function. We monitored the spatially resolved reaction dynamics and substrate specificity of the core mammalian palmitoylation machinery using semisynthetic substrates. Pal...
متن کاملDPD Simulation of a Membrane
Description: This project will work toward the simulation of a cell membrane using a type of molecular dynamics known as Dissipative Particle Dynamics (DPD). In the first week, we will implement a basic molecular dynamics simulator in C++, probably in 2D, to learn about the inner workings of particle-based simulators. In the second week, we will learn about the DPD method and how to implement i...
متن کاملDissipative particle dynamics simulations of polymersomes.
A DPD model of PEO-based block copolymer vesicles in water is developed by introducing a new density based coarse graining and by using experimental data for interfacial tension. Simulated as a membrane patch, the DPD model is in excellent agreement with experimental data for both the area expansion modulus and the scaling of hydrophobic core thickness with molecular weight. Rupture simulations...
متن کاملCoarse-Grained Stochastic Particle-based Reaction-Diffusion Simulation Algorithm
In recent years, several particle-based stochastic simulation algorithms (PSSA) have been developed to study the spatially resolved dynamics of biochemical networks at a molecular scale. A challenge all these approaches have to address is to allow for simulations at cell-biologically relevant timescales without neither neglecting important spatial and biochemical properties of the simulated sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2009